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Introduction
Within the realm of medicine and healthcare, biophysiologic mon-
itoring exists as an important method to collect as well as visualize 
a patient’s data, to understand their current health status as well as 
bodily function, with important uses before, during, and after any 
medical intervention. Biophysiologic monitoring plays an impor-
tant role in the care and recovery of a patient in a variety of set-
tings, including immediately postoperatively in the intensive care 
unit (ICU) (e.g., pressure sensors for ventilator and non-invasive 
blood pressure cuffs to assess stability after anesthesia), for hos-
pitalized patients on wards in recovery (e.g., electroencephalog-
raphy for capturing suspected seizure activity), or on outpatient 

visits for extended close monitoring (e.g., Holter monitors for 24-
hour ECG capture). Defined as physiologic and physical variables 
that require specialized technical instruments and equipment for 
their measurement, biophysiologic measures provide objective in-
formation to help physicians in their therapeutic decision-making 
and medical recommendations.1 Because specialized technical 
instruments and equipment generally collect these measurements, 
specialists trained in such are necessary to properly use, assess, 
and interpret any biophysiologic measures related to a patient’s 
current health status.

Biophysiologic monitoring in neurosurgery
Among the many types of patients seen as well as cared for within 
the hospital setting, neurosurgical patients often comprise the most 
challenging and complicated to manage, care for, and treat. Any 
damage or surgical intervention to the central nervous system can 
result in a cascade of events that must be monitored closely to en-
sure appropriate recovery. Monitoring is particularly important in 
trauma settings, where traumatic brain injury (TBI) often results in 
cerebral edema and intracranial hypertension, quickly impacting 
a patient’s hemodynamic stability as well as mental status. Such 
conditions, if poorly monitored, can rapidly lead to high morbid-
ity and mortality risk.2 Biophysiologic monitoring is an umbrella 
term that includes many different types of monitoring techniques 
for the body’s function. Included among such is neuromonitoring, 
a common method in neuro ICU and intraoperative monitoring of 
neurosurgical patients, comprising many different instruments, 
as discussed below. Neuromonitoring is a type of biophysiologic 
monitoring that focuses on measuring key components of brain 
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physiology, with the goal of restoring these parameters to normal.2 
However, as the central nervous system plays such a crucial role 
in controlling and influencing the rest of the bodily functions and 
outputs, knowledge, as well as, the use of general biophysiologic 
monitoring techniques are of great importance for the success of a 
neurosurgeon by influencing their patient’s recovery.

Herein, the authors discuss the commonly used wearable and 
placeable monitoring devices including the biophysiological data 
that can be collected to monitor, as well as, assess the neurosurgi-
cal patient’s progress toward recovery (Table 1). The authors also 
review new, as well as, upcoming devices and measurements to 
better analyze the neurosurgical patient’s bodily function to assess 
physiologic status as needed. The authors are confident that this 
review article will be valuable in both current understanding and 
future efforts in the neurosurgical area of medicine.

Methods, techniques, and possibilities for monitoring

Cerebral blood oxygen saturation monitoring
Monitoring cerebral blood oxygen saturation is a critical com-
ponent of neurosurgical care, as it provides valuable information 
about the oxygen supply to the brain.3 Considering that transient 
inadequate oxygen delivery to the brain can lead to permanent 
brain damage, stroke, or death, continuous and accurate periopera-
tive monitoring of intracranial oxygenation is essential to detect, as 
well as, prevent potentially devastating complications.

Jugular bulb oximetry
Jugular bulb oximetry (JBO) is one invasive method used to moni-
tor cerebral blood oxygen saturation during neurosurgery. This 
technique involves inserting a catheter into the internal jugular 
vein in the neck and positioning it near the jugular bulb. Using 
optical fiber systems, JBO can measure the oxygen saturation of 
the blood draining from the brain.4 With its continuous and accu-
rate readings, JBO is considered the gold standard for monitoring 
cerebral oxygenation and, by extension – metabolism.5 However, 
similar to other invasive methods, JBO carries a risk of infection, 
bleeding, or catheter dislodgement. Furthermore, the longer JBO is 
used, the greater the risk of thrombosis or hematoma. Additionally, 
JBO may be insensitive to minor perfusion abnormalities and may 
not detect regional ischemia.3

Intracerebral microdialysis
Intracerebral microdialysis is another technique to monitor cerebral 
metabolism and oxygenation during neurosurgery.6 This involves 
inserting a thin catheter into the brain tissue and continuously per-
fusing it with a sterile solution.7 The catheter has a semi-permea-
ble membrane that allows the exchange of substances between the 
brain tissue and the solution, which is then collected and analyzed 
for metabolites such as glucose, lactate, and pyruvate.7 The levels 
of these metabolites provide information about the oxygen supply 
and demand in brain tissue.8 Metabolite levels are mostly studied 
and used in patients suffering from TBI, including subarachnoid 
hemorrhage, but they can be reasonably used in any patient at risk 
for neurologic deterioration.9 Despite the inherent risks of bleed-
ing or infection, intracerebral microdialysis can provide valuable 
information about cerebral metabolism during neurosurgery.8 One 
notable disadvantage of microdialysis is with regard to its limited 
time resolution as analytes must be processed.10 While techniques 
have refined this processing time to potentially even less than one 
minute, microdialysis is technically not a real-time analysis.10

Partial pressure of brain tissue oxygen monitoring
A third invasive approach to monitoring brain oxygenation is to 
measure the partial pressure of brain tissue oxygen (PbtO2). Such a 
technique typically uses a specialized probe inserted into the brain 
tissue. The probe contains a sensor that measures the amount of 
oxygen in the brain tissue and transmits the information to a moni-
tor. The monitor displays the PbtO2 value in real-time, allowing 
neurocritical care teams to monitor changes in brain oxygenation 
levels and adjust treatment as needed. PbtO2 monitoring is useful 
because it provides more direct information about brain oxygena-
tion levels than other monitoring techniques and allows individual 
customization of intracerebral pressure (ICP), as well as, cerebral 
perfusion pressure (CPP) to modulate brain oxygenation.11

Non-invasive options
Non-invasive methods for monitoring cerebral blood oxygen satu-
ration are becoming increasingly popular in neurosurgical prac-
tice. Such methods use light to measure the oxygen saturation in 
the blood vessels in the brain. Cerebral near-infrared spectroscopy 
(NIRS) is the most commonly used non-invasive method in neu-
rosurgery, as it provides continuous cerebral blood oxygen satura-
tion readings in real-time.12 The device is usually placed on the 
forehead of the patient, and it uses infrared light to measure the 
absorption of oxygen in the blood vessels in the brain.12 Ultra-
sound capabilities have been integrated into NIRS devices and 
have shown to have enhanced utility in accurately estimating brain 
oxygenation.13 While non-invasive methods carry fewer risks, 
they currently provide less precise or continuous measurements 
than invasive methods. However, it is probable that in the coming 
years, further iteration and development will allow non-invasive 
techniques to compete with current gold standards.3 Regardless of 
the method used, monitoring cerebral blood oxygen saturation dur-
ing neurosurgery can help clinicians detect potential complications 
early and intervene promptly to prevent brain damage or other ad-
verse outcomes. In some cases, it may also help to guide the sur-
geon’s decisions during the operation, such as deciding when to 
end the surgery or administer certain medications.

Intracranial pressure monitoring
ICP monitoring is a crucial tool used in neurosurgery to measure 
the pressure inside the skull and the brain. As ICP rises, CPP in-
versely decreases, which leads to serious complications such as is-
chemia or herniation. As mentioned before, methods used to assess 
ICP can be categorized as invasive vs. non-invasive.

Invasive ICP monitoring
Fluid-based systems and implantable transducers are invasive ICP 
monitoring techniques. Of the two, fluid-based systems, such as a 
lumbar puncture or external ventricular drains (EVDs) are thought 
to be the gold standard for measuring ICP as they allow accurate 
pressure analysis and simultaneous drainage of cerebrospinal fluid 
(CSF).14–16 However, implantable transducers, such as strain gauge 
transducers, pneumatic sensors, or fiber-optic sensors are also in-
vasive methods validated to detect elevated ICP accurately. Strain 
gauge devices are thin wires inserted into the brain tissue or into 
the fluid-filled spaces surrounding the brain to measure changes 
in pressure.17 Strain gauge devices tend to be the most clinically 
reliable transducers.17 Pneumatic sensors operate by using an air-
filled probe that compresses a sensor in relation to surrounding 
elevated ICP.18 Fiber-optic sensors use light to measure ICP and 
have the distinct advantage of being MRI-compatible.19 Another 
long-established invasive device is the subarachnoid screw, a 
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specialized bolt inserted into the skull and brain tissue to directly 
measure ICP.20,21 Telemetric sensors may be implanted for patients 
who require continuous ICP monitoring for a prolonged period. 
These devices are inserted into the brain tissue or the cerebral ven-
tricle and connected to a telemetry system that wirelessly transmits 
the ICP data to a monitoring device outside the body. They can 
detect changes in ICP by measuring changes in the brain’s electri-
cal signals.

Invasive methods provide accurate and continuous measure-
ments of ICP, but they carry notable risks, such as bleeding, infec-
tion, or damage to the brain tissue. However, in many contexts, 
invasive methods may be the preferred choice for ICP monitoring. 
For example, in patients with severe head injuries or those under-
going complex neurosurgical procedures, invasive methods may 
be necessary to provide accurate and reliable measurements of 
ICP. Additionally, invasive monitoring can provide crucial infor-
mation for determining the appropriate treatment course in patients 
with cerebral edema or hydrocephalus.

Non-invasive ICP monitoring
Non-invasive methods for ICP monitoring include transcranial 
Doppler, optic nerve sheath diameter, wearable headsets, and elec-
troencephalography (EEG). Transcranial Doppler (TCD) uses ul-
trasound to measure blood flow velocity in the brain, which can 
be used to estimate ICP indirectly.22 Optic nerve sheath diameter 
(ONSD) likewise uses ultrasound to measure the diameter of the 
optic nerve sheath, which is strongly correlated with ICP.23 An-
other recently developed non-invasive approach to monitoring ICP 
includes wearable headsets. Such devices use electrodes or sen-
sors placed on the scalp to measure electrical or ultrasound signals 
in the brain and estimate ICP.24 The headsets have great potential 
due to their versatility in various settings, including in the operat-
ing room, ICU, or outpatient clinic. Taking advantage of the soft 
anterior fontanelle, wearable headsets may be especially useful for 
monitoring the ICP of infants.24 EEG power spectrum analysis is 
another non-invasive method that may become useful for analyz-
ing ICP. Designed to measure the brain’s electrical activity, EEG 
signal changes have been shown to correlate strongly with changes 
in ICP.25,26 Continued study of the physiology that couples to EEG 
readings may enable this technique to become more widely used as 
a viable alternative to invasive ICP monitoring.27

Non-invasive methods may be most appropriate for patients 
who cannot tolerate invasive methods or have a lower risk of 
complications. For example, in patients with mild to moderate 
TBI or those undergoing less complex neurosurgical procedures, 
non-invasive methods may be sufficient to monitor ICP. Addi-
tionally, in critically ill patients who require frequent monitoring, 
non-invasive methods may be preferred due to their ease of use 
and lower risk of complications. While invasive ICP monitoring 
methods are still the preferred standard, it is anticipated that com-
ing developments of non-invasive techniques will provide clinical 
equipoise and thereby favor non-invasive approaches due to their 
significantly diminished risk of complications.28

Cerebral compliance and ICP waveform analysis
Monitoring cerebral compliance and ICP waveform analysis dur-
ing neurosurgery can provide valuable information about the status 
of a patient’s brain to guide the management of increased intrac-
ranial pressure.29

Cerebral compliance refers to the ability of the brain to ac-
commodate changes in volume without significant changes in 
pressure.30 Monitoring cerebral compliance involves measuring 

changes in ICP in response to changes in intrathoracic pressure 
(such as during positive end-expiratory pressure, or PEEP) or 
changes in cerebral blood volume (such as during hyperventila-
tion).31,32 This information can help clinicians determine the opti-
mal level of PEEP, the need for hyperventilation, and the response 
to medical interventions.32

ICP waveform analysis involves analyzing the shape and char-
acteristics of the ICP waveform, which can provide information 
about the brain’s underlying physiology as well as the patient’s 
adaptive intracranial capacity.33 The ICP waveform is typically 
composed of several peaks and troughs, which can be used to 
calculate metrics such as the mean ICP, pulse pressure amplitude 
(PPA), and plateau pressure.33 Such metrics can help clinicians 
identify patterns of cerebral compliance, vasospasm, or increased 
intracranial pressure. For example, an elevated PPA may indicate 
increased cerebral vascular resistance, while a decreased PPA may 
indicate decreased cerebral compliance.15 While both cerebral 
compliance and ICP waveform analyses may be useful adjunc-
tive measurement modalities, such techniques require specialized 
equipment and expertise, plus their neurosurgical usability may be 
limited in certain clinical situations or geographic contexts.15

Spinal cord perfusion monitoring
Spinal cord perfusion monitoring during and after neurosurgery 
is critical to prevent spinal cord ischemia, which can lead to seri-
ous neurological deficits or paralysis.34 One method of monitoring 
spinal cord perfusion is through the use of pressure probes that 
measure the spinal cord perfusion pressure (SCPP).35 SCPP is the 
difference between the mean arterial pressure (MAP) and the cer-
ebrospinal fluid pressure (CSFP).36 A decrease in SCPP indicates 
a decrease in spinal cord blood flow and may lead to spinal cord 
ischemia. During and after spinal surgery, pressure probes are 
placed on the spinal cord to monitor SCPP continuously. The goal 
is to maintain SCPP within a certain range, at least between 60–80 
mmHg, for adequate spinal cord perfusion.36

Another method of monitoring spinal cord perfusion is through 
the use of microdialysis catheters. Such catheters can measure spi-
nal cord tissue oxygenation, as well as, glucose levels, which are 
indicators of spinal cord metabolism and perfusion.37 Decreases in 
oxygen and glucose levels can indicate decreased spinal cord per-
fusion. Microdialysis catheters are placed in the spinal cord tissue 
and a small amount of fluid is continuously perfused through the 
catheter. The collected fluid can be analyzed to determine oxygen 
and glucose levels permitting individual optimization.37,38

Using pressure probes and microdialysis catheters together can 
provide a more comprehensive picture of spinal cord perfusion 
during neurosurgery.37 The combination of such monitoring meth-
ods can help guide clinical decision-making and allow for early 
intervention in case of changes in spinal cord perfusion.

Other central and peripheral nervous system monitoring
Monitoring the central and peripheral nervous systems during neu-
rosurgery is essential to ensure patient safety and prevent compli-
cations. One of the most commonly used methods for monitoring 
the central nervous system (CNS) is the EEG. An EEG measures 
the brain’s electrical activity, and as mentioned previously, it can 
be used to detect changes in cerebral perfusion or oxygenation, 
though its primary role is to detect seizures or other abnormal brain 
electrical activity. During neurosurgery, EEG electrodes are placed 
on the scalp, and the EEG signal is continuously monitored, as 
well as, analyzed to guide intraoperative decision-making. For ex-
ample, EEG monitoring can help identify damaged cortex, detect 
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ischemia, or optimize the extent of resection borders.39,40

In addition to EEG, several other methods can be used to 
monitor the peripheral nervous system (PNS) during neurosur-
gery. These include electrooculograms (EOGs), electromyograms 
(EMGs), galvanic skin response (GSR), photoplethysmogram 
(PPG), and electrocardiogram (ECG). EOG measures the electrical 
activity of the muscles around the eyes that can be used to detect 
eye movement and monitor the depth of anesthesia.41 EMG meas-
ures the electrical activity of muscles and can be used to detect 
nerve damage or compression during surgery.42 GSR measures 
change in skin conductance and can be used to detect sympathetic 
nervous system activity.43 PPG measures change in blood volume 
in the capillaries of the skin and can be used to monitor changes in 
blood pressure or peripheral perfusion.44 ECG measures the heart’s 
electrical activity and can be used to detect intraoperative arrhyth-
mias or changes in cardiac output in response to acute blood loss 
or anesthesia-related complications.45

Intraoperatively, additional monitoring modalities exist to help 
guide the neurosurgeon and his team to improve surgical decision-
making and reduce neurologic complications. In addition to EEG 
and EMG, such modalities include electrocorticography (ECoG), 
somatosensory evoked potentials (SSEPs), brainstem auditory 
evoked potentials (BAEPs), visual evoked potentials (VEPs), and 
motor evoked potentials (MEPs). Intraoperative ECoG is the re-
cording of cortical potentials from the brain, which is of particular 
use during functional surgery and in identifying the epileptogenic 
focus for proper resection.46 Evoked potentials are an option for 
the surgeon to objectively assess the integrity of the neural path-
way in question. SSEPs are the most common evoked potential 
type, and when applied to peripheral nerves, motor and sensory 
components can be tested simultaneously. SSEPs are of particu-
lar use in a variety of spine (posterior mainly), intracranial, and 
neuroendovascular surgeries.47 BAEPs utilize an acoustic stimulus 
in the ear canal to assess both the conduction and function of the 
brainstem via cranial nerve eight and are of particular importance 
during posterior fossa surgeries, as well as, other brainstem-related 
procedures.48 VEPs utilize flash stimulation of the retina to record 
visual pathway data. MEPs are often obtained via transcranial 
electrical stimulation of the brain’s surface, an important method 
to monitor the corticospinal tract, particularly during critical surgi-
cal maneuvers or during challenging portions of a surgery.49

Combining methods can provide a more comprehensive picture 
of the patient’s nervous system function during surgery. For exam-
ple, EEG can be combined with EOG to detect changes in brain 
activity during eye movement or with EMG to detect changes in 
muscle activity during seizure activity. GSR and PPG can be used 
together to monitor changes in peripheral perfusion and autonomic 
nervous system activity. MEPs and SSEPs are useful together to 
monitor spinal cord function during spine surgery.50 While numer-
ous modalities exist for the intraoperative analysis of the CNS and 
PNS, the selection of monitoring methods should be based on the 
specific needs of the patient, as well as, the surgical procedure and 
should be guided by the expertise of the clinical team.

General techniques and considerations for the neurosurgical 
patient

Heart rate monitors
Abnormal and significant changes in vital signs often precede ad-
verse events among hospitalized patients.51 Continuous monitor-
ing using wearable or placeable devices can lead to early recogni-

tion of stress and deteriorating patients and help improve outcomes 
among hospitalized neurosurgical patients. Various studies have 
evaluated and validated the accuracy of commercial wearable de-
vices for detecting heart rates.52–54 Wearable devices such as Fit-
bit (Fitbit Inc) have been shown to deliver high specificity and 
positive predictive value but low to moderate sensitivity in detect-
ing tachycardia.52 The heart-rate values derived from Fitbit were 
slightly lower than those from continuous electrocardiography (te-
lemetry), but 73% were within five beats per minute (BPM).53 The 
device’s performance was significantly better among patients with 
sinus rhythm than those without sinus rhythm.52–54 Wearable heart 
rate monitors may be a valuable tool in monitoring inpatients for 
signs of clinical deterioration. In addition to continually monitor-
ing a patient’s ECG, options such as telemetry provide data on 
a patient’s respiratory rate and oxygen saturation, while all this 
information is transmitted to a central monitor for surgeon and as-
sistant monitoring. Such devices also have the potential to enhance 
data collection in neurocritical care research.

Patient position sensors
Given the debilitating nature of neurosurgical conditions, patients 
are more likely to spend a significant amount of time immobile 
in the hospital, rehabilitation centers, or at home. Such settings 
put patients at an increased risk of developing conditions such as 
hospital-acquired pressure injuries or other conditions arising due 
to immobility.55 In an inpatient setting, wearable patient position 
sensors can help reduce the incidence of pressure injuries.56 Wear-
able sensors such as The Leaf Patient Monitoring System (Leaf 
Healthcare, Inc) measure body position and provide feedback pro-
moting optimal turning practices. Such technology can effectively 
inform care delivery, improve turning compliance time, and reduce 
the incidence of pressure injuries.57

More than half of stroke survivors experience walking defi-
cits and reduced mobility.58 Wearable technologies can monitor 
and provide feedback on walking function across different stages 
of stroke recovery.59 Technologies such as wireless sensors, ac-
celerometers, gyroscopes, pressure sensors, and personal activity 
monitors provide clinicians with valuable information to guide in-
tervention.60 This technology is being used both in inpatient and 
community settings to encourage physical activity and recovery 
post-neurovascular intervention or post-stroke.61

Body temperature sensors
Elevated core body temperature after TBI has been identified as a 
mechanism of secondary insult to the brain that can lead to worse 
outcomes, while low core body temperature intraoperatively leads 
to a higher risk of surgical-wound infection and lengthening of 
hospitalization.62,63 Closely monitoring and keeping a patient’s 
body temperature normothermic after TBI may reduce the risk of 
mortality and poor neurological outcomes.64 Wearable body tem-
perature sensors can provide continuous temperature monitoring 
that will be valuable in the management of hospitalized TBI pa-
tients. Temperature monitoring is often one of the multiple features 
of wearables that also measure other vital signs such as heart rate, 
respiration, or oxygen saturation. Studies comparing the accuracy 
of wearable wrist devices to measure vital signs in hospitalized 
patients show that temperature values obtained from the wearable 
were inconsistent with nurse-derived values.65 Nevertheless, wear-
able devices may be more effectively used to monitor changes in 
temperature rather than the absolute value. This finding suggests a 
need for further research and development efforts to improve this 
technology.
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Fluid and electrolyte balance
Imbalances in fluid and electrolytes, particularly sodium, are com-
mon after TBI.66 Combined central diabetes insipidus (DI), char-
acterized by polyuria and hypernatremia, and cerebral salt wasting 
(CSW) syndrome, characterized by excessive sodium excretion, 
diuresis, hyponatremia, and negative sodium balance, rarely occur 
concurrently after TBI.67 Managing combined DI and CSW syn-
drome remains a challenge in neurosurgical critical care because it 
is associated with high mortality, mainly due to delayed diagnosis 
and improper treatment.68 Wearable technology that monitors flu-
ids and electrolytes in neurosurgical patients can prevent adverse 
events due to fluids and electrolyte imbalance in TBI patients. 
Wearable microfluidic sensors simultaneously and continuously 
monitor local sweat rates, as well as, electrolyte concentrations.67 
Current sensors have been shown to accurately derive sweat rates 
and salt sodium concentration.68 However, more robust studies 
looking at the accuracy and effectiveness of wearable electrolyte 
in neurosurgical patients is warranted.

Respiratory monitoring
The most common cause of postoperative mortality is stated to 
be respiratory complications, while also being the fourth most 
common patient safety event for hospitalized patients.69 With 
neurosurgical patients included in this challenge, providing ways 
to monitor their status closely will help ensure an appropriate re-
covery time and to minimize respiratory complications postopera-
tively. Continuous monitoring, rather than intermittent vital sign 
collections, supports such goals. Of the wearable biophysiologic 
instruments, pulse oximetry and capnography are two of the most 
widely studied continuous monitoring techniques that are often 
used together. Pulse oximetry is a non-invasive method to con-
tinually monitor a patient’s oxygen saturation, typically within 2% 
accuracy.70 However, pulse oximetry has limitations, as oxygen 
saturations may appear normal on a patient on supplemental oxy-
gen, despite significant hypoventilation.

For this reason, capnography is an additional option useful 
for neurosurgeons to manage their patient’s respiratory function. 
Capnography measures ventilation or exhaled carbon dioxide, pro-
viding data on airflow, breathing frequency, and end-tidal carbon 
dioxide concentration.69 Other options to monitor respiration in-
clude bioacoustics monitors for airflow and breathing frequency, 
chest wall movement that can be measured with plethysmography 
technology, accelerometers which are used to measure breathing 
frequency, and piezoelectric technology under a patient’s mattress 
that, in addition to their heart rate, can noninvasively measure 
breathing frequency.69–74

Transcranial direct current stimulation
Poor recovery from stroke drives the search for novel and effec-
tive therapies in stroke rehabilitation. Transcranial direct current 
stimulation (tDCS) has been investigated extensively to evaluate 
its safety and efficacy in various neurological disorders, including 
stroke and epilepsy. The tDCS device is a 13 cm X 21 cm portable 
box, with two rubber electrodes that are applied with a conduc-
tive gel or water-soaked pads. Continuous current of 1–2 mA is 
delivered to the patient for 10–20 minutes. One electrode of the 
device is placed in the motor cortex region, and the other in the 
contralateral supraorbital region.75 The safety of tDCS devices has 
been widely studied, and only a few adverse events have been re-
ported. Reported adverse events include headache and dizziness.76 
Studies suggest that patients with chronic stroke and/or mild-to-
moderate motor impairments are more likely to benefit from tDCS. 

The size of the improvement post-tDCS is variable, with a maxi-
mum effect size of 35.7% improvement compared to sham.77 Ad-
ditionally, tDCS is also being studied as a non-invasive therapy of 
neuromodulation in epilepsy.78 However, more robust studies with 
larger patient populations are warranted to evaluate the efficacy 
and safety of tDCS in neurosurgical patients.

Ocular pressure monitoring
TBI can result in various visual problems due to increased intracra-
nial and intraocular pressure.79 Intraocular pressure monitoring de-
vices can be of great significance for the diagnosis and treatment of 
visual problems and be a helpful indication of a patient’s condition 
post-TBI. Intraocular pressure monitoring devices are commonly 
studied in glaucoma patients in an outpatient setting.80 Currently, 
studies evaluating the usage of intraocular pressure monitoring in 
neurosurgical patients are limited, but further investigations may 
demonstrate their utility for the neurosurgical inpatient.

Light reactivity monitoring
Careful and repetitive clinical monitoring is an important part of 
the management and evaluation of TBI patients. Clinical examina-
tions help assess the patient’s level of consciousness, pupillary di-
ameter and reactivity light, and the presence of focal neurological 
deficits.81 However, clinical examinations, such as a neurological 
wake-up test (NWT), are controversial in critically ill patients be-
cause they elicit an undesired stress response that may worsen the 
patient’s condition.82 Wearable devices that monitor light reactiv-
ity without eliciting a significant stress response may be a help-
ful alternative to NWT, but further robust studies evaluating such 
technology are needed.

Future of wearable biosensors for healthcare monitoring
The future of wearable technology in neurosurgery is optimistic. 
Various technologies are being developed that will ultimately help 
patients and providers. One such technology is the development 
of a patient-wearable tool for the continuous monitoring of move-
ment disorders. The current gold standard to evaluate a patient’s 
motor function is typically a subjective description and fails to 
capture daily fluctuation in motor performances. Novel wearable 
devices are being developed that will allow for continuous moni-
toring of patients’ motor functions.83 Such technology can give 
physicians new insights into the patient’s condition and offer the 
best treatment options. Preliminary data on the efficacy of these 
devices suggests that the technology has potential but warrants fu-
ture research and development.

Advancements in microfluidic paper-based analytical devices 
are an innovative platform for on/off-site biosensing that can be 
especially useful in rural or remote settings. These devices are ex-
cellent tools for point-of-care diagnosis and biosensing.84 Utiliza-
tion of these tools in neurosurgery, specifically in prehospital TBI 
management, can give providers early data on patient conditions 
that will help inform better clinical decision-making.

Biosensors are widely used across neurosurgery, and new tech-
nologies continue to be developed. However, there are still a few 
areas within neurosurgery where further research and development 
of biosensor utilization can be fruitful. One such area is monitor-
ing hormone status post-pituitary surgery. Careful monitoring of 
postoperative hormone status is critical to successful outcomes.85 
A biosensor that continuously monitors hormones such as prol-
actin, cortisol, and growth hormones will provide valuable data 
regarding a patient’s endocrine outcomes after pituitary surgery.
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Advantages and disadvantages of biophysiologic monitoring 
in neurosurgery
Biophysiologic monitoring in neurosurgery is incredibly useful 
given the objectivity and clarity it can provide in seemingly un-
clear and challenging situations in patients, both in, as well as, 
outside the operating room. Several advantages exist that should 
be kept in mind for the neurosurgical patient. First, biophysiologic 
measurements are objective and difficult, if not impossible, for the 
patient to distort, allowing for easier interpretation and next-step 
management decision-making. Second, they are highly quantifi-
able and well-structured, where changes in medications, fluids, or 
other medical interventions will demonstrate an expected response 
to the biophysiologic measurements currently being monitored on 
the patient. Such monitoring allows for efforts to be objectively 
and safely reproducible between patients. Third, with many bio-
physiologic monitoring devices becoming smaller and more ad-
vanced, continuous data can be collected and stored on each pa-
tient during their surgery and throughout recovery. Collected data 
provides usable measurements to assess patient care and more ac-
curately analyze patient outcomes retrospectively in neurosurgi-
cal clinical research. With such data, future artificial intelligence-
driven monitoring systems will continue to improve and assist in 
improving patient care and outcomes. Fourth, data can be collected 
continuously on each neurosurgical patient, rather than manually 
and intermittently by nursing staff. Such data provides a clearer 
picture of each patient’s surgery, recovery, and where and when 
additional interventions may be necessary.

Some important challenges exist with biophysiologic moni-
toring and require consideration when planning to utilize such 
methods on the neurosurgical patient. First, biophysiologic moni-
toring devices can be quite obtrusive depending on their size and 
location on the patient’s body. In addition, they can become cum-
bersome and difficult for staff to manage and individually align. 
If multiple monitoring devices are being used, this can quickly 
frustrate the patient and supportive staff throughout the recov-
ery phase. Second, biophysiologic measurements may be too 
highly relied on for their reliability and validity. Depending on 
the monitoring device, proper placement, and quality, inaccurate 
measurements may be accepted as appropriate, even if the patient 
is symptomatic or decompensating. Lastly, as biophysiologic de-
vices have become increasingly advanced, some have become 
too complex for support staff and may require additional time 
and training for proper usage and handling. This is important for 
the most accurate data to be collected for the neurosurgeon to 
utilize and interpret.

As a physician weighs the advantages and disadvantages of uti-
lizing biophysiologic monitoring for their patient intraoperatively, 
it is important to note several factors that may influence any moni-
toring that is used. Neurosurgical patients often present as some of 
the most complicated and complex patients to care for, with their 
metabolic demands and autonomic functions varying significantly 
depending on the cause of hospitalization (e.g., TBI, spinal cord 
injury, Guillan-Barre Syndrome, etc.). Similarly, a patient’s func-
tional and coma status may make some monitoring devices more 
relevant or useful than others. Other factors that may influence 
biophysiological monitoring include proper attachment/placement 
of the device on or around the patient, proper software updates and 
setup, a patient’s size and/or body habitus, a patient’s systemic vs. 
local infections, a patient’s willingness to cooperate with the moni-
toring device’s use, and supporting staff’s willingness to ensure 
proper use and attachment throughout recovery. These are a few of 
the many factors that may influence the function of biophysiologic 

monitoring devices, which will require thought to their proper use 
before and during their placement.

Once the neurosurgeon has assessed the reason for hospitaliza-
tion and potential neurosurgical intervention, they may move on to 
review the multiple options of biophysiological monitoring devic-
es (Table 1) and weigh the advantages and disadvantages of each, 
for their patient’s current situation and medical status. Once these 
have been examined and determined, such monitoring devices may 
be added to the order of the patient’s care plan to be executed as 
needed throughout treatment and recovery. Such functions may be 
included in new protocols for different neurosurgical pathologies 
or surgeries, which may speed up this process for the care team. 
Frequent discussion on the phase of recovery may be necessary to 
ensure monitoring devices are adequately utilized, including when 
a monitoring device may no longer be needed given the recovery 
or decline of the patient’s health status.

Holistic discussion of biophysiologic monitoring in clinical 
practice
Holistic medicine is an approach to health care that addresses the 
psychological, familial, societal, ethical, spiritual, and biological 
dimensions of health and illness.86 When considering the holistic 
side of medicine, biophysiologic monitoring plays an important 
role in a patient’s well-being, as it helps to address the biological 
dimension of health and illness of the patient, which is neces-
sary to understand the overall characteristics, stages, and severity 
of the patient’s disease through objectively notable clues. This 
is similar to governing health exterior to inferior in Chinese 
Medicine, as external monitoring can help the physician clini-
cally determine the extent of an individual’s disease and more 
accurately determine their overall recovery or worsening of their 
condition. Though disease processes and conditions may appear 
similar externally and clinically, each patient is internally unique 
and therefore requires close biophysiologic monitoring to assess 
each patient as a unique individual to ensure they are internally 
cared for.

Conclusions
Biophysiologic monitoring for the neurosurgical patient includes a 
wide variety of invasive and non-invasive options to best assess the 
patient’s bodily function and health status, pre-, intra-, and post-
operatively. Within neurosurgery, subjectivity in patient signs and 
symptoms plays a large role in differential diagnoses and manage-
ment but can introduce challenges in clearly guiding surgical and 
non-surgical decision-making. Herein, the authors have provided a 
clear review of the commonly used biophysiologic monitoring op-
tions and their measurements within neurosurgery. The synthesis 
of methods contained herein may provide meaningful guidance for 
neurosurgeons in effectively monitoring and treating their patients 
while also helping guide future efforts in patient biophysiologic 
monitoring developments within neurosurgery.

bpm, beats per minute; cm, centimeter, dBm decibel milliwatt; 
dL, deciliter; Hg, mercury; hr, hour; L, liter; IMU, inertial meas-
urement unit; kPa, kilopascal; mA, milliamps; mg, milligram; mm, 
millimeter; Mmol, millimole; ml, mililiter; mV, millivolt; s, sec-
ond; µS, microsiemens.
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